112-1 Full Curriculum of Da-Yeh University

Information				
Title	Fundamental Digital Design	Serial No./ID	0587 / IFI2011	
Required/Credit	Required /3	Time/Place	(Thu)567 / H708	
Language	Chinese	Grade Type	Number	
Lecturer /Full- or Part-time	Tsai Huan-Liang /Full-time	Graduate Class	Non-graduating Class	
School System / Dept / Class, Grade	Bachelor / Department of Computer Science and Information Engineering / Class 1, Grade			
	2			
Office Hour / Place	(Mon) 16:20~17:10, (Tue) 08:10~09:00, (Wed) 08:10~09:00, (Thu) 11:10~12:00 / H715			
Lecturer	n.a.			

Introduction

The teaching units of this course mainly contain Boolean Algebra unit, Minterm and Maxterm Expansions unit, Karnaugh Maps unit, Quine-McCluskey Method, Multi-Level Gate Circuits unit and Combinational Circuit Design unit. Each unit offers many exercises. Students can build up correct concepts on combinational circuit design by the instruction and exercises practice.

Outline

- 1: Boolean Algebra
- 2: Simplification of Boolean Algebra
- 3: Applications of Boolean Algebra
- 4: Minterm and Maxterm Expansions
- 5: Karnaugh Maps
- 6: Quine-McCluskey Method
- 7: Multi-Level Gate Circuits
- 8 : Combinational Circuit Design
- 9: Multiplexers, Decoders, and Programmable Logic Devices

Prerequisite

а

The Relationship Between Courses and Departmental Core Competencies and Basic Skills

- 🥞 1.2 Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- 🥞 2.1 Ability to design and conduct experiments, as well as to analyze and interpret data
 - 2.2 Ability to propose, conduct, and write the reports of a research project
- 2.3 Ability to dedign and integrate the systems
 - 3.1 Ability to cooperate supportively with others and communicate effectively

- 3.3 Ability to engage in life-long learning
- 1.1 Knowledge of mathematics and physics for the application of information engineering
 - 3.2 Understanding of engineering ethics and international vision

Teaching Plan						
Core Capability	Weight(%	Ability	Teaching	Assessment and	Core	Final
) [A]	index(Performance	Methods	Weight	Competenc	y Exam
		Indicators)			Learning	Grades
					Outcomes	【C=B*A
					[B]	1
1.2 Ability to use	10	The practical abilities	Practical	Course	Total: 100	10
the techniques,			Operation	Participation: 20%		
skills, and modern			(Experiment,	Final Exam: 30%		
engineering tools			Machine	Midterm Exam:		
necessary for			Operation	30%		
engineering			Lecturing	Written Report:		
practice			Special	20%		
			Report			
2.1 Ability to	20	The professional abilities	Practical	Course	Total: 100	20
design and			Operation	Participation: 20%		
conduct			(Experiment,	Final Exam: 30%		
experiments, as			Machine	Midterm Exam:		
well as to analyze			Operation	30%		
and interpret data			Lecturing	Oral Report: 20%		
			Special			
			Report			
2.3 Ability to	20	The professional abilities	Lecturing	Midterm Exam:	Total: 100	20
dedign and			Practical	30%		
integrate the			Operation	Final Exam: 30%		
systems			(Experiment,	Course		
			Machine	Participation: 20%		
			Operation	Oral Report: 20%		
			Special			
			Report			
1.1 Knowledge of	50	The professional abilities	Lecturing	Midterm Exam:	Total: 100	50
mathematics and			Practical	30%		
physics for the			Operation	Final Exam: 30%		
application of			(Experiment,	Course		
information			Machine	Participation: 20%		
engineering			Operation	Oral Report: 20%		
			Special			
			Report			

Grade Auditing

Midterm Exam: 30% Final Exam: 30%

Course Participation: 20%

Oral Report: 18% Written Report: 2%

Book Type (Respect intellectual property rights. Please use official textbooks and do not illegally photocopy others' works.)

Book Type	Book name	Author
Textbook	Fundamentals of Logic Design	Charles H. Roth, Jr., Larry L.
		Kinney , Eugene B. John

Lesson Plan				
Weeks	Content	Teaching Methods		
1	Binary & Intellectual Property Protection (use legitimate	Lecturing、 Special Report		
	textbooks only) & Traffic safety Propaganda			
2	Bollen algebra	Lecturing、 Practical Operation		
		(Experiment, Machine Operation, Special		
		Report		
3	Bollen algebra	Lecturing、 Practical Operation		
		(Experiment, Machine Operation, Special		
		Report		
4	AND/OR	Lecturing、 Practical Operation		
		(Experiment, Machine Operation, Special		
		Report		
5	K-map	Special Report		
6	Multi-gate circuit	Lecturing、 Practical Operation		
		(Experiment, Machine Operation, Special		
		Report		
7	Combinational gate design	Lecturing、 Practical Operation		
		(Experiment, Machine Operation, Special		
		Report		
8	Combinational gate circuit	Lecturing、 Practical Operation		
		(Experiment, Machine Operation, Special		
		Report		

9	VHDL	Lecturing、 Special Report
10	Latch and flip-flop	Lecturing、 Practical Operation
		(Experiment, Machine Operation、 Special
		Report
11	register and counter	Lecturing、 Practical Operation
		(Experiment, Machine Operation、 Special
		Report
12	Sequential circuit	Lecturing、 Practical Operation
		(Experiment, Machine Operation, Special
		Report
13	State diagram	Lecturing、 Practical Operation
		(Experiment, Machine Operation, Special
		Report
14	State diagram reduction	Lecturing、 Practical Operation
		(Experiment, Machine Operation, Special
		Report
15	Sequential circuit design	Lecturing、 Practical Operation
		(Experiment, Machine Operation, Special
		Report
16	Arthimetic operation	Lecturing、 Practical Operation
		(Experiment, Machine Operation, Special
		Report
17	State machine design	Lecturing、 Practical Operation
		(Experiment, Machine Operation, Special
		Report
18	Final Exam	Exam